
COMPANY CONFIDENTIAL

NXP Webinar: November 12, 2020
Presented by: Maciej Halasz, Timesys

Secure by Design NXP Webinar Series
Software Integrity and Data Confidentiality: Establishing
Secure Boot and Chain of Trust on i.MX Processors

Agenda
• Why Do We Need Software Integrity?
• Digital Signatures
• Secure Boot with Advanced High Assurance Boot
• Chain of Trust
• Data Confidentiality
• Keys Storage Options
• Available Timesys assistance

Why?

Why Verify Software?

• Authentication
• Ensure software comes from us
• Enforce product behavior
• Protect from “product takeover”

• Integrity
• Protect from running modified software
• Ensure software correctness — recognize software corruption

Device Security Layers

Secure Boot

Tamper Resistance

Secure Storage

Identity Management

Secure Data Communication

Secure Network Access

Policies & Certifications

Secure Boot
provides

Authentication and
Integrity

Digital Signatures

Signatures
John Hancock signs his name

A hacker tries to sign
John Hancock's name

Signatures
John Hancock signs the

Declaration of Independence

We know it was him.

Company signs some software
Signatures

We know it was us.

Signatures

• What can we sign?
• Boot loader
• Linux kernel + initramfs
• Files
• Programs
• Entire file systems

• Why?
• Check that Company says it's OK to run

Software Integrity

Secure Boot Without Encryption

• Provides
• Authentication (unauthorized images not allowed to run)
• Integrity (authorized images can not be ‘tampered’ with)
• IP protection

• Does not provide
• Anti-cloning

• Uses asymmetric key for signing
• Private key -> used for signing
• Public key -> used to verify signature

• Bootloader verification performed by ROM code
• SoC specific

Terminology (1)

• Hash

• Asymmetric Key

Terminology (2)

• CSF: Command Sequence File
• Includes digital signature data, public key certificates and Image specific info

• CST: Code-Signing Tool
• Utilities provided by NXP to sign and encrypt software

• AHAB: Advanced High Assurance Boot
• Solution to authenticate software

• SRK: Super Root Key
• Part of the Public Key Infrastructure (PKI) tree. Public SRKs are hashed and stored in SOCs eFuses

Secure Boot Flow

Host PC
Bootloader

Compute
hash Signature

Private key

encrypt

Device
Bootloader

Computed
hash

Decrypted
hash

Public key

decrypt

Signature

Boot ROM

SW

HW

Hash must match to boot!

OTP
fuses

Secure Boot Steps On i.MX (Overview)

• Create private/public key pairs
• Burn the public key hash to OTP
• Enable secure boot option in U-Boot config
• Sign bootloader using code signing tools provided by NXP
• Test and boot using signed image
• Close configuration (irreversible step)

• Manufacturing tool images need to be signed

i.MX 8X processor

i.MX 8 Secure Boot Flow

Secure Boot i.MX 8 – U-Boot Container

3rd Container Header and Signature

2nd Container Header and Signature

1st Container Header and Signature

Si
gn

ed

Padding for 1kB Alignment

Padding
SECO Firmware

Padding
SCU Firmware + DCD Table

Cortex-M Image
SPL Image

Padding
U-Boot Image

Arm Trusted Firmware

Container header
Signature block header

Super Root Key table

SignatureSi
gn

at
ur

e
Bl

oc
k

Secure Boot – Deployment

• Each deployment image must be in a container format
• Offsets must be calculated or copied from build logs for CSF description

file
• Use Code Signing Tools
• Generate PKI tree
• Program SRK fuses on the target
• Create/sign deployment container and program on the target
• Check for SECO events
• Close the device configuration (non-reversable)

Secure Boot (1) – CST Installation

• Keys creation
• Download Code Signing Tools from NXP and navigate to keys directory:

• Create/edit two files: serial and key_pass.txt
• serial – used by OpenSSL for certificate serial numbers

• key_pass.txt – custom passphrase that will protect the AHAB code signing private keys

$ tar xzf cst-3.1.0.tgz
$ cd cst-3.1.0/keys

$ vi serial
42424242

$ vi key_pass.txt
Timesys123
Timesys123

CST 3.1.0 - Supports HABv3,
HABv4 and AHAB
CST 3.3.1 - NEW! Supports
HABv4 and AHAB

i.MX 8M, i.MX 6 uses HAB
i.MX 8/8X uses AHAB

Secure Boot (2) – Generate Keys

• Keys generation
• Generate PKI tree – follow suggested below answers

• This example creates new PKI tree, valid for 5 years, with 4 Super Root Keys (SRKs).
• The resulting private keys are placed in the keys directory of the CST, and the

corresponding certificates are placed in the crts directory

$./ahab_pki_tree.sh
...

Do you want to use an existing CA key (y/n)?: n
Do you want to use Elliptic Curve Cryptography (y/n)?: y
Enter length for elliptic curve to be used for PKI tree:
Possible values p256, p384, p521: p384
Enter the digest algorithm to use: sha384
Enter PKI tree duration (years): 5
Do you want the SRK certificates to have the CA flag set? (y/n)?: n

...

CA

SRK1

SRK2

SRK3

SRK4

Secure Boot (3) – Generate Keys

• Keys generation
• Using the public key certificates from the previous step, we can now create

• the SRK table (a table of the public SRKs)
• the SRK fuse table to be programmed into the SOC fuses:

$ cd ../crts/
$../linux64/bin/srktool -a -s sha384 -t SRK_1_2_3_4_table.bin \

-e SRK_1_2_3_4_fuse.bin -f 1 -c \
SRK1_sha384_secp384r1_v3_usr_crt.pem,\
SRK2_sha384_secp384r1_v3_usr_crt.pem,\
SRK3_sha384_secp384r1_v3_usr_crt.pem,\
SRK4_sha384_secp384r1_v3_usr_crt.pem

Secure Boot (4) – Flash Keys

• Flash the keys
• fuse.bin file contains values that need to be flashed

in SOC

• Fuses are SOC specific, for
i.MX8:

• Use U-Boot fuse command

$ od -t x4 SRK_1_2_3_4_fuse.bin

0000000 1dccd1aa 9b31c9bf d2cddfd0 be77ba30
0000020 1203b1b2 c03137b0 de46db9a 28aa12b2
0000040 aaf1a04e 7fc12a60 21a5ef01 60fc583c
0000060 ae122793 05d3ae40 dd0068d4 45a2f9e2

=> fuse prog 0 730 0x1dccd1aa
=> fuse prog 0 731 0x9b31c9bf
=> fuse prog 0 732 0xd2cddfd0
=> fuse prog 0 733 0xbe77ba30
=> fuse prog 0 734 0x1203b1b2

…

These are One-Time Programmable (OTP) e-fuses.
Once you write them, you can not change them.

Secure Boot – U-Boot

• U-Boot configuration
• Bootloader provides additional commands for AHAB
• Allows authentication of additional container images
• CONFIG_AHAB_BOOT enables SCU API in U-Boot

• U-Boot container
• Commands shall be issued from within CST folders

• Generate U-Boot flash image container layout

$ cd <work>/imx-mkimage
$ make SOC=iMX8QX flash

…
CST: CONTAINER 0 offset: 0x400
CST: CONTAINER 0: Signature Block: offset is at 0x590
DONE.
Note: Please copy image to offset: IVT_OFFSET + IMAGE_OFFSET

Secure Boot Setup with CST

• Create the CSF description for the U-Boot container
• Example available under Uboot doc/imxahab/csf_examples/
• Complete the csf_boot_image.txt information, specifically:

• Sign the boot image using CST

$[Authenticate Data]
Binary to be signed generated by mkimage
File = "UBoot_flash.bin"
Offsets = Container header Signature block (printed out by mkimage)
Offsets = 0x400 0x590

$ cd <CST>
$./cst3.1.0/linux64/bin/cst -i csf_boot_image.txt -o UBoot_flash.signed.bin

Secure Boot – Verify SECO Events

• If fuses written properly, there should be no SEC0 events on boot
• Check for SECO events with U-Boot command:

• U-Boot decodes SECO events
• Example of failure when container image signed with wrong keys, not

matching OTP SRK hashes:

=> ahab_status
Lifecycle: 0x0020, NXP closed

No SECO Events Found!

=> ahab_status
Lifecycle: 0x0020, NXP closed

SECO Event[0] = 0x0087EE00
CMD = AHAB_AUTH_CONTAINER_REQ (0x87)
IND = AHAB_NO_AUTHENTICATION_IND (0xEE)

Secure Boot – Closing Configuration

• When device boots a signed container without any SEC0 events, it is
safe to close the OTP configuration.

• The SEC0 lifecycle should be changed from 0x20 NXP closed to 0x80
OEM closed.

• Closing is done with

• Upon reboot, ahab_status command should show 0x80 OEM closed
• This step is irreversible!

=> ahab_close

Secure Boot Easy Method

• Standardized approach to enabling security features
• Enablement through additional Yocto metalayer
• Simple AHAB enablement:

• Additional build infrastructure simplifies building signed production
images

Advanced High Assurance Boot
AHAB_ENABLE = "1"
AHAB_SIGN_SRKTABLE = "~/cst-3.1.0/crts/SRK_1_2_3_4_table.bin"
AHAB_SIGN_PUBLIC_CRT = "~/cst-3.1.0/crts/SRK1_sha384_secp384r1_v3_usr_crt.pem"

Chain of Trust

Chain of Trust

• The whole software needs to be authenticated and validated — not just the
bootloader
• Single failure along the chain will render the process insecure

• Extending secure boot scheme to user space
• ROM
• Bootloader (eg: SPL and/or U-Boot)
• Kernel/Device tree
• Root Filesystem (RFS)

Chain of Trust

Extend the authentication to all layers in the software stack

ROM

pubkey1

Bootloader Linux Kernel +
initramfs

RFS

pubkey2 digest

Signature
verification

Signature
verification

Signature
verification

Fit Image

• FIT (Flattened Image Tree) image: binaries +
meta-data

• An image format that makes use of Device Tree
concept to define an image structure

• Consists of multiple images combined into one
• Verified bootloader checks FIT image

signature
• Advantages

• Mainline u-boot support
• Integrated in Yocto 2.2

• UBOOT_SIGN_ENABLE, UBOOT_SIGN_KEYDIR
• Low impact on boot time (< 6ms added)

• Disadvantages
• Limited to RAMFS (read only / size limited by

RAM)

Kernel 1

Kernel 2

Initramfs 1

DTB1

DTB2

CONFIG 1

CONFIG 2

Headers fitimage

dm-verity

• Operates at block level
• Below file-system layer

• Uses hash table
• Root hash signed for verification
• Signing key stored in initramfs
• Advantage

• Runtime check, minimal boot time overhead,
scales well with size

• Considerations
• Read-only RFS
• Requires block devices

Portions of this page are reproduced from work created and shared by the Android Open Source Project and used
according to terms described in the Creative Commons 3.0 Attribution License.

https://code.google.com/p/android/
https://creativecommons.org/licenses/by/4.0/

Data Confidentiality

Encryption

MWO RDBTQHSX

If you saw this message...

Would you know what it means?

Encryption

MWO RDBTQHSX

M W O R D B T Q H S X
+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

Encryption

MWO RDBTQHSX

M W O R D B T Q H S X
+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

N X P S E C U R I T Y

NXP SECURITY

Encryption

MWO RDBTQHSX

M W O R D B T Q H S X
+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

N X P S E C U R I T Y

NXP SECURITY

Encryption

• Pick any number 1 to 25
• An attacker has to guess which

?

?

?

?

? ?

?

?

?
M W O R D B T Q H S X
+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

N X P S E C U R I T Y

M W O R D B T Q H S X
+5 +5 +5 +5 +5 +5 +5 +5 +5 +5 +5

R B T W I G Y V M X CM W O R D B T Q H S X
+7 +7 +7 +7 +7 +7 +7 +7 +7 +7 +7

T D V Y K I A X O Z E

Encryption

Basically...

Encryption is a secret + some math
a key an algorithm+

Encryption

• What are we encrypting?
• Company software IP
• Confidential information

• user data
• bank info

• Product Software Updates

• Why?
• Privacy
• Compliance
• Protect from prying eyes
• Anti-cloning

Encryption Process

• Uses symmetric key cryptography
• Same key used for encryption and decryption

• Provides
• Confidentiality
• IP Protection (Anti-cloning)

• Key needs to be unique per device

• Identify what to protect
• Bootloader, Linux kernel, RFS, select applications?
• Affects firmware update design

How do we encrypt the system?

i.MX Encrypted Boot Flow

RFS Encryption with dm-crypt

• Block level
• Option for RFS encryption or partitions

• Key stored outside RFS

• Supported on all major distros (debian,
ubuntu) and Android

• Easy setup
• Key management on embedded

system tricky
• Needs a unique hardware ID/key

ROM

U-boot

kernel/dtb

Load

Load

initramfs

Load

RFS (dm-crypt)

Decrypt

User input
(passphrase)

USB key

TPM

Encrypted key
(boot partition),
decrypted by
SoC driver

Key Storage

Storage Options

Keys that need protection can be secured in one of many ways:

1. Using on-chip One Time Programmable fuses (OTP)
2. CAAM Secure Non-Volatile Storage (SNVS)
3. OP-TEE/TZ with CAAM
4. Dedicated off-processor chip

• TPM
• Secure Element SE050

Takeaways

• Selection and implementation of security mechanisms is product specific
• Make security requirements part of your product requirements from day 1
• If needed, leverage assistance of experienced security development

teams from NXP and Timesys:
• Product security design
• Configuration and implementation of needed security features
• Additional security documentation
• Security verification
• Compliance alignment

• Start with initial non-binding conversation

Upcoming
Webinars

In-depth Dive

• Trusted Execution Environment: Getting Started with OP-TEE on i.MX
Processors

• Linux Kernel Security: Overview of Security Features and Hardening

• Security Hardening: Protecting Your Embedded Linux Device from the Risk
of Being Compromised

• Designing OTA Updates: An Integral Part of a Secure System

EXTERNAL USE51

For More Information and to Become More Secure

Timesys is an embedded Linux security expert and an NXP Gold Partner.
To discuss your project, please contact us at sales@timesys.com

Use this link to go to Services for Securing your device

Thank You!

mailto:sales@timesys.com
https://www.timesys.com/security/secure-by-design/

	Secure by Design NXP Webinar Series
Software Integrity and Data Confidentiality: Establishing Secure Boot and Chain of Trust on i.MX Processors

	Agenda
	Why?
	Why Verify Software?
	Device Security Layers
	Digital Signatures
	Signatures
	Signatures
	Signatures
	Signatures
	Software Integrity
	Secure Boot Without Encryption
	Terminology (1)
	Terminology (2)
	Secure Boot Flow
	Secure Boot Steps On i.MX (Overview)
	i.MX 8X processor
	i.MX 8 Secure Boot Flow
	Secure Boot i.MX 8 – U-Boot Container
	Secure Boot – Deployment
	Secure Boot (1) – CST Installation
	Secure Boot (2) – Generate Keys
	Secure Boot (3) – Generate Keys
	Secure Boot (4) – Flash Keys
	Secure Boot – U-Boot
	Secure Boot Setup with CST
	Secure Boot – Verify SECO Events
	Secure Boot – Closing Configuration
	Secure Boot Easy Method
	Chain of Trust
	Chain of Trust
	Chain of Trust
	Fit Image
	dm-verity
	Data Confidentiality
	Encryption
	Encryption
	Encryption
	Encryption
	Encryption
	Encryption
	Encryption
	Encryption Process
	i.MX Encrypted Boot Flow
	RFS Encryption with dm-crypt
	Key Storage
	Storage Options
	Takeaways
	Upcoming Webinars
	In-depth Dive
	For More Information and to Become More Secure
	Slide Number 52

