
EXTERNAL
NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER
PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2020 NXP B.V.

OP-TEE: Trusted Execution
Environments on i.MX Processors

Nathan Barrett-Morrison
Senior Embedded Systems Engineer
Timesys Corporation

SECURE BY DESIGN SERIES

Agenda
TEE Overview

OP-TEE Overview
Memory Protections
Trusted Applications
Enabling & Testing
Enhanced OpenSSL Engine

Other Security Considerations

Trusted Execution Environment
(TEE) Overview

Trusted Execution Environment (TEE) Overview

Why is TEE needed?
• Another layer of protection against exploits in Rich OS
• Linux kernel: 265 vulnerabilities in 2019

Isolated environment
• Code/Data confidentiality & integrity

Runs alongside a REE (Linux distro, Android, etc.)
• Rich Execution Environment
• Provides services to apps on REE

Policy in software, enforced by hardware
• Arm TrustZone (memory/IO protection based on state)

REE

TEE

IoT

source

https://www.timesys.com/security/trusted-software-development-op-tee/

Simplified Hardware View of Arm TrustZone

L2 Cache

IRQ - not
secure

RAM

UART

MMC

RTC

GPIO

Ethernet

Arm SoC

Security Controller

Normal world

CPU core

CPU

I-Cache

D-Cache

Security Configuration Register

1
NS

L2 Cache

FIQ - secure

RAM

UART

MMC

RTC

GPIO

Ethernet

Arm SoC

Security Controller

Secure world

CPU core

CPU

I-Cache

D-Cache

Security Configuration Register

0
NS

Not Secure Secure

source

https://www.timesys.com/security/trusted-software-development-op-tee/

TEE Use Cases

• Secure key handling
• Potentially replace dedicated security chips (e.g.: HSM/TPM) and still perform secure key

storage, signing, attestation, and more
• Protect Intellectual Property by providing data decryption for DRM purposes
• Protect sensitive data processing/algorithms with a Trusted User Interface/Application

• Payment info, fingerprint authentication, and more
• Hardware level data security

• Replay Protected Memory Blocks (RPMB) on eMMC
• Hardware level memory security

• DDR firewalls (via TrustZone Address Space Controller [TZASC])

OP-TEE
Overview

Choosing Secure World OS

Global Platform TEE API and Framework Spec
• TEE Client API
• TEE Internal Core API, etc.

Commercial/proprietary and open source
• Features, support

Open-source Portable TEE (OP-TEE)
• 50+ platforms/SoCs supported
• Global Platform TEE specification compliant
• OS, client: BSD 2-clause license, Linux driver, test suite: GPLv2
• Maintained by Linaro

OP-TEE Architecture

• Provided by open source ecosystem:
• Operating Systems
• Linux Driver
• OP-TEE Client

• Product team develops:
• Trusted Application

• Runs from OP-TEE
• Client Application

• Runs from Linux/REE

source

https://www.timesys.com/security/trusted-software-development-op-tee/

Arm Trusted Firmware

• Reference implementation of secure world software for Arm architectures (aarch32 and
aarch64)

• On i.MX 8M, ATF (alongside the SCU) currently partitions non-secure resources for the
OS partition before launching OP-TEE

• ATF also provides the secure monitor code to manage the switch between secure and
non-secure world

• On the i.MX 6/7 platforms, by default (without OP-TEE), U-Boot and Linux run in a
secure world context

• On the i.MX 8M/MN/Mini, the ATF switches U-Boot and Linux into a non-secure context
by default

i.MX 8M OP-TEE Boot Flow

1. Power on
2. HAB verification (if enabled)
3. SPL loads ATF, OP-TEE, and U-Boot
4. SPL then jumps to ATF firmware
5. ATF firmware hands control over to OP-TEE
6. OP-TEE jumps to U-Boot

source

https://www.nxp.com/docs/en/user-guide/IMX_PORTING_GUIDE.pdf

OP-TEE: Security with i.MX Platform

• i.MX’s CAAM (Cryptographic Accelerator and Assurance Module) can be utilized for
• Seeding and/or generating random numbers with OP-TEE
• Creating separate hardware unique keys (HUKs) for secure/normal world by hashing the

i.MX’s one-time programmable master key (OTPMK)
• HUK can then be used for various security applications without need for separate TPM/HSM

OTPMK Hash with CAAM HUK

* Generated hash differs
between normal/secure world

• Note: CAAM is available on many, but not all i.MX processors. It is only used if
available.

Memory Protection

TZASC380 – RAM Protection

• TrustZone Address Space Controller

• IP developed by Arm, designed to provide configurable protection over DRAM memory
space.

• Supports 16 independent address regions.
• Access controls are independently programmable for each address region.
• Sensitive registers may be locked.
• Host interrupt may be programmed to signal attempted access control violations.

• 32 MB of the RAM space are allocated to OP-TEE
• 28 MB is mapped by the TZASC as secure (OP-TEE RAM) i.e. [0xFE000000 to 0xFFC00000]
• 4 MB is mapped as non-secure (shared memory) i.e. [0xFFC00000 to 0xFFFFFFFF]
• On i.MX 8, SCFW divides/partitions these resources.
• Note: In OP-TEE 3.7 (and certain i.MX 8 platforms) base addresses are shifted to be within the first 1GB of DDR

• Depending on OP-TEE version, these are defined inside
• optee-os/core/arch/arm/plat-imx/tzasc.c
• optee-os/core/arch/arm/plat-imx/drivers/tzc380.c

Peripheral Security

• Arm TrustZone can also be configured to secure peripheral address spaces (UART,
I2C, SPI, etc.) if desired
• Peripheral control must then be performed inside the secure world (typically with an

authorized API call from the normal world)

i.MX 8 DDR Example Memory Regions

0x80000000 to 0x8001FFFF Secure ATF Reserved by ATF

0x80020000 to 0x801FFFFF Non-secure OS Reserved by UBoot

0x80200000 to 0x87FFFFFF Non-secure OS -

0x88000000 to 0x887FFFFF M4_0 Reserved by SCFW/U-Boot for Cortex-M4

0x88800000 to 0x8FFFFFFF M4_1 Reserved by SCFW/U-Boot for Cortex-M4

0x90000000 to 0xFDFFFFFF Non-secure OS -

0xFE000000 to 0xFFBFFFFF Secure ATF Reserved by ATF for OPTEE

0xFFC00000 to 0xFFFFFFFF Non-secure OS -

0x880000000 to 0x8C0000000 Non-secure OS -

• Many of these regions are also marked as reserved inside the Linux DTB, such that Linux will not (and
cannot) allocate them for use

• Note: In systems which do not utilize the maximal supported DDR address space the TZASC must be
configured to protect all aliased regions as well

• Only an example: depending on processor and OP-TEE version 3.7, these addresses may have changed

Verifying Memory Protection

• Linux can’t read OP-TEE memory

r oot @i mx8qxp: ~# devmem2 0xFFC00000
Memor y mapped at addr ess 0xf f f f a24a0000.

Read at addr ess 0xFFC00000 (0xf f f f a24a0000) : 0x00000000

r oot @i mx8qxp: ~# devmem2 0xFE000000

Memor y mapped at addr ess 0xf f f f 98656000.

Bus er r or

Trusted Applications (TA)
Overview

Trusted Applications

Secure World Trusted App
• Cryptographic functions (CAAM accelerated, mbed TLS library)
• Secure data storage

– AES GCM encrypted file in REE (/data/tee)
– eMMC RPMB

Linux User Space Client App
• Shared memory

Example TA Architecture

Client App

OpenSSL engine

Trusted App

Commands
- GenerateKey
- DeleteKey
- Sign
- Verify
- Encrypt
- Decrypt

OP-TEE OS

libteec

Linux kernel

User Application

Encrypted Storage
(RFS or eMMC RPMB)

tee-supplicant

Normal World Secure World

tee driver
Crypto Function

Library

Anatomy of CA and TA

Hello world example found here

Client Application
TEEC_InitializeContext

TEEC_OpenSession

TEEC_InvokeCommand

TEEC_CloseSession

TEEC_FinalizeContext

Trusted Application
TA_CreateEntryPoint

TA_OpenSessionEntryPoint

TA_InvokeCommandEntryPoint

TA_CloseSessionEntryPoint

TA_DestroyEntryPoint

https://github.com/linaro-swg/optee_examples

Trusted Application – Build Environment

• To build a trusted application, you’ll need to setup the TA dev kit
• Included as part of optee_os (optee_os/blob/master/ta/mk/ta_dev_kit.mk)

• The trusted application then uses the ta_dev_kit.mk path while building
• For the hello_world example, source/Makefile are located at optee_examples/hello_world/ta
• Once built, this produces a UUID filename that is used to load the TA when you start the host

application from the REE

• The host application is also similarly built:
• For the hello_world example, source/Makefile are located at optee_examples/hello_world/host
• Once built, this produces an Arm executable that can be run from the REE/Linux

(optee_example_hello_world)

• When building these externally, there are many environmental variables that must be
set up manually. Yocto manages most of this for you… so use it instead!

Trusted Application – Executing

• Once both are built, you end up with an application pair such as:

Application name UUID

optee_example_hello_world 8aaaf200-2450-11e4-abe2-0002a5d5c51b

• From the REE/Linux, this can then be run:
• root@imx8: optee_example_hello_world

• OP-TEE then knows what the corresponding TA UUID is and will load/execute it
• The UUID application is generally stored at /lib/optee_armtz/*.ta on the REE (Linux)

Enabling & Testing
via Yocto

Trusted Application Compilation Flow

Yocto/Bitbake Compile OP-TEE OS
(optee-os)

Compile OP-TEE Client
(optee-client)

Compile OP-TEE Test
(optee-test)

Trusted Application Dev
Kit (TA DevKit)

Trusted Application source

Compiled Trusted
Application

• Also worth mentioning, only a properly signed TA will execute at runtime...
• Public portion of keypair is compiled into OP-TEE
• TA is then signed with private key after compilation
• OP-TEE verifies TA signature when loading/executing

i.MX 8 OP-TEE Device Tree Configuration

• Automatically added into device tree by U-Boot or ATF on i.MX 8:
• Enables OP-TEE driver (linux/drivers/tee/optee/core.c)

f i r mwar e {

opt ee {

compat i bl e = " l i nar o, opt ee- t z" ;

met hod = " smc" ;

} ;

} ;

Building with OP-TEE

MACHINE_FEATURES += "optee"

DISTRO_FEATURES += "optee"

IMAGE_INSTALL += "optee-test optee-os optee-
client"

Yocto

CONFIG_IMX_OPTEE=y

U-Boot (i.MX 6/7)

CONFIG_OPTEE=y

Linux (i.MX 6/7/8)

* Does not appear to be necessary on i.MX 8 during testing

1)

2)

3)

4) bitbake core-image-minimal

OP-TEE Test Suite: XTest

• Once built, confirm OP-TEE’s functionality with the test suite
• XTest runs various operations and checks for correct functionality

• Running the test suite:
root@imx8:~# ls /dev/tee*

/dev/tee0 /dev/teepriv0

root@imx8:~# xtest

…

16099 subtests of which 0
failed

74 test cases of which 0 failed

0 test case was skipped

TEE test application done!

Enhanced OpenSSL

Why?

• Abstract method to utilize OP-TEE OS
• Can use OpenSSL instead of writing custom code

• Hardware accelerated cryptographic operations

• Additional layer of security for key storage

• Following operations are supported:
• RSA/ECC key-pair generation
• RSA/ECC key-pair import
• SHA/MD5 hash digest generation
• RSA PKCS decryption
• RSA/ECC signature generation

Enhanced OpenSSL Block Diagram

source

https://www.nxp.com.cn/docs/en/application-note/AN12632.pdf

Example: Sign and Verify Data through HSM/TEE

1. Set OpenSSL loading information for enhanced engine (can also modify openssl.cnf)
• $ export IMXENGINE="-pre SOPATH:/usr/lib/libengsecureobj.so -pre ID:engsecureobj -pre LISTADD:1 -pre LOAD"
• $ openssl engine ${IMXENGINE} -t dynamic

2. Generate a private key in the HSM with sobj_app, This will also create a fake PEM (which contains
information to get required key from HSM)

• $ sobjapp -G -m rsa-pair -s 2048 -l "rsagen2048" -i 1 -w rsa2048.pem
3. Retrieve Public Key

• $ openssl rsa -in rsa2048.pem -pubout -out rsapub2048.pem
4. Sign data

• $ openssl dgst -sha1 -sign rsa2048.pem -out sig.data data
5. Verify data

• $ openssl dgst -sha1 -verify rsapub2048.pem -signature sig.data data

Other Security Considerations

Other Security Considerations

• Disable JTAG (i.MX 6/7/7M)

• Setup JTAG for secured access only (i.MX 8/8X)

• Enable secure boot
• Establish chain of trust (FIT image, SOC specific APIs)
• Without secure boot, OP-TEE cannot be truly secure!

– (as it could be replaced with a modified version)

• Review non-secure world permissions
• Review all bootloaders prior to OP-TEE

• Review use of keys
• Secure storage requires unique hardware key

• Disable login prompts

• Disable username/password access via SSH. Require key pairs if you must use SSH

Other Security ConsiderationsOther Security Considerations

• Check your included open source software packages for Common Vulnerabilities and
Exploitations (CVEs) on the national vulnerability database

• A typical embedded system has hundreds or thousands of these packages which must
be checked. There are tools which can help!
• Vigiles Vulnerability Management

• Even OP-TEE has CVEs

https://nvd.nist.gov/
https://www.nxp.com/support/support/nxp-engineering-services/vigiles-software-keeping-your-linux-bsp-secure:VIGILES

Takeaways

• TEE provides inexpensive additional security layer

• OP-TEE makes adoption of TEE easier

• Make security requirements part of your product requirements from day 1

• If needed, leverage assistance of experienced security development
teams from NXP and Timesys:
• Product security design
• Configuration and implementation of needed security features
• Additional security documentation
• Security verification
• Compliance alignment

• Start with initial non-binding conversation

Additional Resources

More info can be found on OP-TEE upstream repositories:

● https://github.com/OP-TEE/optee_os/tree/master/documentation

● Upstream repositories are available at: https://github.com/OP-TEE/

● OP-TEE website: https://www.op-tee.org/

Enhanced OpenSSL

● http://source.codeaurora.org/external/imxsupport/imx_sec_apps

https://github.com/OP-TEE/optee_os/tree/master/documentation
https://github.com/OP-TEE/
https://www.op-tee.org/
http://source.codeaurora.org/external/imxsupport/imx_sec_apps

Upcoming Webinars

In-depth Dive

• Linux Kernel Security: Overview of Security Features and Hardening

• Security Hardening: Protecting Your Embedded Linux Device from the Risk
of Being Compromised

• Designing OTA Updates: An Integral Part of a Secure System

Previous Webinars

Previous Webinars

Secure By Design Series
• Securing Embedded Linux Devices: Pitfalls to Avoid

• Software integrity and data confidentiality: Establishing secure boot and chain of trust on i.MX
processors

Stay Secure (Vigiles) Series
• Software Security Management: Cutting through the vulnerability storm with NXP Vigiles

• BSP security maintenance: Best practices for vulnerability monitoring & remediation

• Full Life Cycle Security Maintenance of Embedded Linux BSPs

• Best practices for triaging Common Vulnerabilities & Exposures (CVEs) in embedded systems

https://www.nxp.com/pages/:TIP-SECURING-EMBEDDED-LINUX-DEVICES-PITFALLS
https://www.nxp.com/design/training/software-integrity-and-data-confidentiality-establishing-secure-boot-and-chain-of-trust-on-i-mx-processors:TIP-SOFTWARE-INTEGRITY-AND-DATA-CONFIDENTIALITY
https://www.nxp.com/design/training/introducing-vigiles:TIP-CUTTING-THROUGH-THE-VULNERABILITY-STORM
https://www.nxp.com/design/training/bsp-security-maintenance-best-practices-for-vulnerability-monitoring-remediation:TIP-BSP-SECURITY-BEST-PRACTICES
https://www.nxp.com/design/training/full-life-cycle-security-maintenance-of-embedded-linux-bsps:TIP-FULL-LIFE-CYCLE-SECURITY-MAINTENANCE-D0602
https://www.nxp.com/design/training/best-practices-for-triaging-common-vulnerabilities-and-exposures-cves-in-embedded-systems:TIP-BEST-PRACTICES-FOR-TRIAGING-COMMON-VUL

For More Information and to Become More Secure

Timesys is an embedded Linux security expert and NXP Gold Partner.
To discuss your project, please contact us at sales@timesys.com

Use this link to go to Services for securing your device

Thank You!

mailto:sales@timesys.com
https://www.timesys.com/security/secure-by-design/

Q&A

	OP-TEE: Trusted Execution Environments on i.MX Processors
	Slide Number 2
	Trusted Execution Environment�(TEE) Overview
	Trusted Execution Environment (TEE) Overview
	Simplified Hardware View of Arm TrustZone
	TEE Use Cases
	OP-TEE�Overview
	Choosing Secure World OS
	OP-TEE Architecture
	Arm Trusted Firmware
	i.MX 8M OP-TEE Boot Flow
	OP-TEE: Security with i.MX Platform
	Memory Protection
	TZASC380 – RAM Protection
	Peripheral Security
	i.MX 8 DDR Example Memory Regions
	Verifying Memory Protection
	Trusted Applications (TA)
Overview
	Trusted Applications
	Example TA Architecture
	Anatomy of CA and TA
	Trusted Application – Build Environment
	Trusted Application – Executing
	Enabling & Testing
via Yocto
	Trusted Application Compilation Flow

	i.MX 8 OP-TEE Device Tree Configuration
	Building with OP-TEE
	OP-TEE Test Suite: XTest
	Enhanced OpenSSL

	Why?
	Enhanced OpenSSL Block Diagram
	Example: Sign and Verify Data through HSM/TEE
	Other Security Considerations

	Other Security Considerations
	Other Security Considerations

	Takeaways
	Additional Resources
	Upcoming Webinars

	In-depth Dive
	Previous Webinars

	Previous Webinars
	For More Information and to Become More Secure
	Slide Number 43
	Slide Number 44

