
EXTERNAL
NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER
PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2020 NXP B.V.

Secure Software Updates:
Designing OTA Updates for secure
embedded Linux systems
Maciej Halasz
Timesys Corporation

SECURE BY DESIGN SERIES

Agenda

Software updates – Why do we need them?

What to update?

Architecture for OTA

Linux software update options

swupdate

ostree

containers

Security of a software update

How to manage secure software update?

Scripts

hawkBit

Software Updates – Why do we
need them?

Why software updates?

• Designing secure devices does not end with the initially deployed software

• Number of reported software vulnerabilities is growing rapidly

• End users and companies are more aware and more concerned about privacy and data
protection

• Security is a MUST HAVE requirement for most compliance and standard guidelines

• Software updates are
a way to manage:
• New features
• Bug fixes
• Security fixes

Embedded Device Environment

• Power
• Often unreliable

• Outages
• Battery depletion

• Unreliable connectivity
• Mobile connections (WiFi, BLE, LTE)
• Low bandwidth

• Often times remote
• Limited access

• Lifespan
• 5-20 years, depending on device type

Server update side is more under
control
• Secure
• Reliable Power and Network
• Easy human intervention

What to update?

What to update?

• File (Application, user space component or Linux kernel)
• Typically managed by a custom process, developed specifically for a product/company.

Leverages open source techniques

• Feature (package)
• Package managers such as apt-get or yum work great for servers but are an overkill for

embedded devices

• Entire filesystem, complete image
• One of the most common approaches in embedded space. Can be implemented with one of

FOSS solutions

• Entire filesystem, atomic, differential update
• Commonly used, does a clever atomic update of group of files
• Used in situations where bandwidth is limited

• Container
• Operating system and applications can be deployed in self contained files

Requirements for software updates

• Secure
• Mechanism cannot become an attack vector for a device

• Atomic
• An update must be installed completely or not performed at all

• Fail-safe
• In the event of a failed update, fallback to last known good state

• Complete
• Capable of updating all software layers

• Frequency
• More frequent updates may drive selection of the update method

• Speed of an update
• Just like with frequency, the time in which we need a device updated may drive selection of

the update method

Linux software update options

• Software update with local presence at
the device

• Pros:
• Can recover device easily
• Can ensure it boots correctly into desired

image

• Cons:
• Not very scalable
• Time consuming process
• Requires physical access to a device
• Requires certain interfaces to be available

e.g.: USB (security attack vector)

• Software update is done remotely from a
provisioning server

• Pros:
• Does not require physical access to the

device
• Scalable
• Only network communication required for

an update

• Cons:
• Limited remote troubleshooting
• Requires elaborate server system to

manage remote devices

Local Update Over-the-Air (OTA) Update

Update with a fallback

• Update mechanism
• Symmetric: Requires double

the storage space for the
update

• Asymmetric: Update
performed in place by
booting into initramfs

• Reboot required
• Fallback feature

• Example technologies for
image updates
• swupdate
• Android

Bootloader

Linux
image 1
(active)

Linux
image 2
(inactive)

Persistent data

Active
Flag

Bootloader

Linux
image
(active)

Recovery
image

Persistent data

Active
Flag

Symmetric

Asymmetric

Update Process:
1. Boot into active Linux image 1
2. Receive/Install Linux image 2
3. Toggle Active flag/Reboot
4. If reboot fails fallback to previous

active image (watchdog/heartbeat)

Update agent/client

• Script or application deployed on a device that manages the update process
• Applicable to offline and OTA update processes
• Tasks performed depend on the server side framework used
• Example tasks

• Authenticate server connection
• Download select update software
• Perform local security checks
• Perform local update
• Toggle the boot flag

Device Update
Server

Firmware
repo

Update
client

Embedded Device

Atomic image update approach

• Applies set of rules to update Linux image in place
• Update deltas are per modified files
• Allows for smaller data transfers
• Fast update
• Incremental atomic upgrades that can be quickly deployed or rolled back on demand
• Example technologies for atomic differential update

• OSTree
• swupd

Atomic differential update approach

• Typical process

Bootloader

Persistent
data

Partition 1

Deployment incr 1

Deployment incr 2

Deployment incr 3

Deployment incr 4

Linux Image

Initramfs

uEnv.txt

Storage device

Sysroot repo Deployment sysroot

Partition 2 Mounted
RFS

bootargs= “Deployment incr 2”

Define the links for
Deployment sysroot

This is how incremental
upgrades can be applied on a

per file basis

Containers

• Container allows for separation of
applications from OS

• Each application/feature can be self
contained and independent of other
applications

• Can run Qt5.2 and Qt5.12 apps on the
same device

• Can limit container resource access
• CPU usage, Memory usage, Network

• Requires runtime container manager to
be installed in OS

• Updates of application containers are
atomic and recoverable

UI
application

APIs/libs

Sensor
monitor

Network

Operating System (embedded Linux)

Container manager (runtime)

Container Container

OTA Areas of Concern

• Roll-back
• What happens when we lose power during an active update?

• Firmware Security
• Is what we downloaded coming from our company?
• Are there any “trojan horses”?

• Scale
• How do I manage firmware for many device types and many devices?
• How do I roll out a firmware update in large volume devices?

• Monitor
• How do I know which devices need an update?
• How do I know which devices failed and need recovery?

Select Software
Update Frameworks

swupdate (1)

• Symmetric or Asymmetric image update framework

https://github.com/sbabic/swupdate

• Written in C
• GPLv2 license
• Supports signed images, Local/OTA updates, and U-Boot
• Has an active development community
• Used in commercial setting

• e.g.: Siemens (https://openiotelceurope2016.sched.com/event/7rrA)
• e.g.: Bosch (https://docs.bosch-iot-rollouts.com/documentation/introduction/ecosystem.html)

https://github.com/sbabic/swupdate
https://openiotelceurope2016.sched.com/event/7rrA
https://docs.bosch-iot-rollouts.com/documentation/introduction/ecosystem.html

swupdate (2)

• Updates delivered in simple CPIO archive (.SWU)
• swupdate tools must be installed in a root filesystem
• Each individual image is described in sw-description and integrity is

validated with a SHA256 hash
• Handler plugins implement the details of how each described image is

handled
• U-Boot env update
• NOR, NAND, UBI partition and write
• MMC/SD/eMMC partition and write

• Uses menuconfig for configuration
• Supports REST interface to Hawkbit server for remote update

software =
{

version = “3.5.1”;
ventilator_iMX8 = {

hardware-compatibility : [“REV7”];
images : (

{
filename = “yocto-rootfs.ext2.gz”;
device = “/dev/mmcblk2p2”;
type = “raw”;
sha256 =

“8e760f8378c273894adf78bba983ced094039cc8746272f484909aca84728b7”
compressed = true;

}
);
scripts : (

{
filename = “device_update.sh”;
type = “ shellscript “;
sha256 =

“82a8738928cf8382908f928bba983c63729dcc8378746272f484909aca83783c”
}

);
};

}

Main block

Hardware association

Handler for rfs image

Handler for scripts

Example Yocto recipe (ventilator-iMX8-swu-image.bb)

Copyright (C) 2015 Unknown User <unknown@user.org>
Released under the MIT license (see COPYING.MIT for the terms)

DESCRIPTION = "Example Compound image for Ventilator i.MX8 board "
SECTION = ""

Note: sw-description is mandatory
SRC_URI_ventilator_iMX8 = "file://sw-description \

"
inherit swupdate

LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COREBASE}/LICENSE;md5=4d92cd373abda3937c2bc47fbc49d690 \

file://${COREBASE}/meta/COPYING.MIT;md5=3da9cfbcb788c80a0384361b4de20420"

IMAGE_DEPENDS: list of Yocto images that contains a root filesystem
it will be ensured they are built before creating swupdate image
IMAGE_DEPENDS = ""

SWUPDATE_IMAGES: list of images that will be part of the compound image
the list can have any binaries - images must be in the DEPLOY directory
SWUPDATE_IMAGES = " \

core-image-full-cmdline \
"

Images can have multiple formats - define which image must be
taken to be put in the compound image
SWUPDATE_IMAGES_FSTYPES[core-image-full-cmdline] = ".ext4"

COMPATIBLE = "ventilator_iMX8"

• There is a ready-made metalayer for a Yocto Project based Linux BSP
• Called meta-swupdate, it can be downloaded from:

https://github.com/sbabic/meta-swupdate

• By default it is set to generate asynchronous recovery deployment image

$ bitbake swupdate - image

• Standard Yocto build images are generated in tmp/deploy/
• ext2.gz root filesystem
• A custom update image (.swu) can be generated with a custom image recipe which uses desired

sw-description file

$ bitbake ventilator - iMX8- swu- image

swupdate & Yocto Project

https://github.com/sbabic/meta-swupdate

Local Update Over-the-Air (OTA) Update

swupdate command

• Run a script every time a USB drive is
mounted

• Commands to be executed:
$swupdate - i <name_of_update>

or
$swupdate - i <name_of_update> - k

<pubkey>

• Assumptions:
− Software update image .SWU is available

(downloaded)
• Example:

$ mount /dev/sda1 /mnt/
$ swupdate - i /mnt/ventilator - i.mx8 -

swu- image.swu
$ reboot

• Download file from an HTTP server

$ swupdate - k <pubkey> - u <URL>

• Get images from a HAWKBIT server

• Incremental atomic differential upgrade mechanism

https://ostree.readthedocs.io

• LGPLv2+ licensed
• Often referred to as “git for operating system binaries”
• Stores data in a “git-like” object repo to record and deploy complete file system trees

using binary deltas
• Yocto Project infrastructure provided under meta-updater
• Deployment sysroot as an OSTree commit
• Make bootloader and initramfs work together to boot the deployment
• Projects that leverage OSTree:

• Qt OTA
• Automotive Grade Linux (AGL)

OSTree (1)

https://ostree.readthedocs.io/

• Structure on the target
• /ostree/repo
• /ostree/deploy

• Multiple deployments stored here
• /ostree/deploy/$OSNAME/$CHECKSUM

• Each deployment is uniquely identified by SHA256 checksum
• Each deployment has its own copy of /etc

• /usr is hard links to deploy directory
• /usr is read-only

• Never boot to physical rootfs
• initramfs chroot to “deployment”

• Persistent files can be stored in /var
• OSTree commands for deployment/rollback

• ostree-admin-upgrade
• ostree-admin-deploy {REFSPEC}
• ostree-admin-status
• ostree-admin-undeploy {INDEX}

Mount is established at boot time,
pointing to the currently deployed

filesystem

OSTree (2)

Containers

• Multiple container technologies available in Open Source
• Docker
• Flatpack
• Resin
• Snappy

• Container runtime — integrated into embedded device
• Docker Engine — Most talked about
• containerd — Simplified and robust container manager
• runC — CLI based tool for starting and running containers
• cri-o — container runtime for Kubernetes

• Ready for deployment applications have to be placed in containers before OTA update
• Physical location of app containers on target storage can be managed in similar way to

regular application binary deployment

OTA process security
- SWUpdate example

Update Manager

Server authentication

Why: Ensures device is downloading images from
“trusted” server
How: PKI infrastructure with certificates (similar to how
your browser trusts a website) using standard protocols
such as HTTPS/TLS
Device: OTA Server’s public key is stored on device to
authenticate server.
OTA Server: OTA Server’s private key is stored on
server.
Optionally (highly recommended) signed certificates
issued from a certificate authority is used to authenticate
the server. This allows for easy migration of the update
server between various cloud providers.

HTTPS

SERVER

Key1, Key2, … KeyN

CAAM OPTEE

DEVICE

Device authentication

Why: Ensures “authorized/trusted” devices get updates
and “counterfeit” devices or rouge actors not able to
download firmware
How: Similar to OTA server authentication but the device
public key is stored on the OTA server to authenticate the
device.
The device private key can be stored securely on the
device. CAAM blob in combination with OP-TEE can be
used to protect the private key.
Note: The key generation is device specific and is
typically done as part of the manufacturing protection
mechanism process.

HTTPS

SERVER

Key1, Key2, … KeyN

Update Manager

CAAM OPTEE

DEVICE

Image bundle authentication

Why: Ensures authenticity of image i.e. image is from the device manufacturer.

How: Image bundle (kernel/dtb/rfs/application) is signed using a private key on the build
server or manufacturer signing server.

Public key is stored on device and used to authenticate the image “before” flashing.

Optionally the image can be encrypted using a shared symmetric key. The encryption key
should be protected on the device using CAAM and/or OP-TEE.

Note: The keys mentioned above are different from the OTA server / device keys

Image bundle authentication (contd.)

Signed image bundle

Signed bootloader Signed FIT image
(kernel/dtb/initramfs)

Signed
RFS/Apps

Verified as
part of OTA
before
flashing

Verified as part of boot
process

Individual component verification

Why: Protects against offline attacks (flash being replaced) or firmware being flashed using
manufacturing tool etc.

How: This is part of the previously discussed secure boot and chain of trust where each
component is signed individually using a private key on the build/signing server and the hash of
the public key is stored on the i.MX processor OTP secure boot fuses to establish the hardware
root of trust. The ROM code verifies the signed bootloader using the public key (verified from
OTP flash) and bootloader verifies the kernel.. So on establishing the chain of trust.

ROM

pubkey1

Bootloader Linux Kernel
+ initramfs

RFS

pubkey2 digest

Signature
Verification

Signature
Verification

Signature
Verification

Optional additional layer of security

In addition to storing secret keys in the CAAM, the i.MX Secure World OS OP-TEE can be
used to authenticate and/or de-crypt the firmware update images to reduce the attack
surface.

Source: NXP Application
Note AN12900

OTA Security — rollout process

Actions undertaken typically by the update agent

Step 1 • Authenticate server

Step 2 • Download firmware update image securely (TLS)

Step 3 • Verify signature of downloaded image

Step 4 • Optionally decrypt downloaded image

Step 5 • Verify no un-authorized rollback of images (anti-roll back)

Step 6 • Flash new image

Step 7 • Images additionally checked as part of secure boot and chain of trust

Deployment management

Deployment of software updates requires:

• Information on available targets
• Hardware revision
• Currently installed software version
• Device status (online/offline/available power/in-use)

• Information on available software updates
• Software version
• Intended hardware rev

Example solution of open source deployment framework – hawkBit

• Eclipse plugin

https://eclipse.org/hawkbit

• hawkBit is a domain-independent back-end framework for rolling out software updates to constrained
edge devices as well as more powerful controllers and gateways connected to IP based networking
infrastructure

• Has integration with swupdate

https://eclipse.org/hawkbit

Solution from Timesys

VigiShield Secure By Design Suite

• End-to-End Secure by Design solution for your product
• Utilizes full capabilities of underlying hardware and OS
• Best-in-class security features for your Linux platform

• Software integrity and authentication
• Data confidentiality (at rest, in use, in motion)
• IP protection; anti-cloning
• Reduces attack surface
• Data isolation

• Integrates SWUpdate based OTA infrastructure

Takeaways

• Field Updates capability is a must have requirement in products today

• Updates == ability to keep software in your products up to date

• Ongoing Security

• New features and bug fixes

• Many options and techniques are available (including Open Source)

• Need to consider system update backend when choosing the update technology

• Designing and implementing update system can be time consuming

• Accelerate design and implementation of OTA with VigiShield (for SWUpdate)

• Additional information on NXP security features:

https://community.nxp.com/t5/i-MX-Security-Features-and/i-MX-Security-Features-amp-Collateral/ta-p/1192496

https://community.nxp.com/t5/i-MX-Security-Features-and/i-MX-Security-Features-amp-Collateral/ta-p/1192496

Upcoming Webinars

In-depth Dive

• Security Hardening: Protecting Your Embedded Linux Device from the Risk
of Being Compromised

Previous Webinars

Previous Webinars

Secure By Design Series
• Securing Embedded Linux Devices: Pitfalls to Avoid

• Software integrity and data confidentiality: Establishing secure boot and chain of trust on i.MX
processors

• Trusted Execution Environment: Getting started with OP-TEE on i.MX processors

• Linux Kernel Security: Overview of Security Features and Hardening

Stay Secure (Vigiles) Series
• Software Security Management: Cutting through the vulnerability storm with NXP Vigiles

• BSP security maintenance: Best practices for vulnerability monitoring & remediation

• Full Life Cycle Security Maintenance of Embedded Linux BSPs

• Best practices for triaging Common Vulnerabilities & Exposures (CVEs) in embedded systems

https://www.nxp.com/pages/:TIP-SECURING-EMBEDDED-LINUX-DEVICES-PITFALLS
https://www.nxp.com/design/training/software-integrity-and-data-confidentiality-establishing-secure-boot-and-chain-of-trust-on-i-mx-processors:TIP-SOFTWARE-INTEGRITY-AND-DATA-CONFIDENTIALITY
https://www.nxp.com/design/training/software-integrity-and-data-confidentiality-establishing-secure-boot-and-chain-of-trust-on-i-mx-processors:TIP-SOFTWARE-INTEGRITY-AND-DATA-CONFIDENTIALITY
https://www.nxp.com/design/training/trusted-execution-environment-getting-started-with-op-tee-on-i-mx-processors:TIP-TRUSTED-EXECUTION-ENVIRONMENT-GETTING-STARTED
https://www.nxp.com/design/training/linux-kernel-security-overview-of-security-features-and-hardening:TIP-LINUX-KERNEL-SECURITY-OVERVIEW-OF-SECURITY
https://www.nxp.com/design/training/introducing-vigiles:TIP-CUTTING-THROUGH-THE-VULNERABILITY-STORM
https://www.nxp.com/design/training/bsp-security-maintenance-best-practices-for-vulnerability-monitoring-remediation:TIP-BSP-SECURITY-BEST-PRACTICES
https://www.nxp.com/design/training/full-life-cycle-security-maintenance-of-embedded-linux-bsps:TIP-FULL-LIFE-CYCLE-SECURITY-MAINTENANCE-D0602
https://www.nxp.com/design/training/best-practices-for-triaging-common-vulnerabilities-and-exposures-cves-in-embedded-systems:TIP-BEST-PRACTICES-FOR-TRIAGING-COMMON-VUL

For More Information and to Become More Secure

Timesys is an embedded Linux security expert and NXP Gold Partner.
To discuss your project, please contact us at sales@timesys.com

Use this link to go to Services for securing your device

Thank You!

mailto:sales@timesys.com
https://www.timesys.com/security/secure-by-design/

Q&A

	Secure Software Updates: Designing OTA Updates for secure embedded Linux systems
	Slide Number 2
	Software Updates – Why do we need them?
	Why software updates?
	Embedded Device Environment
	What to update?
	What to update?
	Requirements for software updates
	Linux software update options
	Update with a fallback
	Update agent/client
	Atomic image update approach
	Atomic differential update approach
	Containers
	OTA Areas of Concern
	Select Software Update Frameworks
	swupdate (1)
	swupdate (2)
	Slide Number 19
	Example Yocto recipe (ventilator-iMX8-swu-image.bb)
	swupdate & Yocto Project
	swupdate command
	OSTree (1)
	OSTree (2)
	Containers
	OTA process security
- SWUpdate example
	Server authentication
	Device authentication
	Image bundle authentication
	Image bundle authentication (contd.)
	Individual component verification
	Optional additional layer of security
	OTA Security — rollout process
	Deployment management
	Solution from Timesys
	Takeaways
	Upcoming Webinars

	In-depth Dive
	Previous Webinars

	Previous Webinars
	For More Information and to Become More Secure
	Slide Number 43
	Slide Number 44

